Contact

Contact HaxiTAG for enterprise services, consulting, and product trials.

Showing posts with label AI in productivity tools. Show all posts
Showing posts with label AI in productivity tools. Show all posts

Friday, January 16, 2026

When Engineers at Anthropic Learn to Work with Claude

— A narrative and analytical review of How AI Is Transforming Work at Anthropic, focusing on personal efficiency, capability expansion, learning evolution, and professional identity in the AI era.

In November 2025, Anthropic released its research report How AI Is Transforming Work at Anthropic. After six months of study, the company did something unusual: it turned its own engineers into research subjects.

Across 132 engineers, 53 in-depth interviews, and more than 200,000 Claude Code sessions, the study aimed to answer a single fundamental question:

How does AI reshape an individual’s work? Does it make us stronger—or more uncertain?

The findings were both candid and full of tension:

  • Roughly 60% of engineering tasks now involve Claude, nearly double from the previous year;

  • Engineers self-reported an average productivity gain of 50%;

  • 27% of AI-assisted tasks represented “net-new work” that would not have been attempted otherwise;

  • Many also expressed concerns about long-term skill degradation and the erosion of professional identity.

This article distills Anthropic’s insights through four narrative-driven “personal stories,” revealing what these shifts mean for knowledge workers in an AI-transformed workplace.


Efficiency Upgrades: When Time Is Reallocated, People Rediscover What Truly Matters

Story: From “Defusing Bombs” to Finishing a Full Day’s Work by Noon

Marcus, a backend engineer at Anthropic, maintained a legacy system weighed down by years of technical debt. Documentation was sparse, function chains were tangled, and even minor modifications felt risky.

Previously, debugging felt like bomb disposal:

  • checking logs repeatedly

  • tracing convoluted call chains

  • guessing root causes

  • trial, rollback, retry

One day, he fed the exception stack and key code segments into Claude.

Claude mapped the call chain, identified three likely causes, and proposed a “minimum-effort fix path.” Marcus’s job shifted to:

  1. selecting the most plausible route,

  2. asking Claude to generate refactoring steps and test scaffolds,

  3. adjusting only the critical logic.

He finished by noon. The remaining hours went into discussing new product trade-offs—something he rarely had bandwidth for before.


Insight: Efficiency isn’t about “doing the same task faster,” but about “freeing attention for higher-value work.”

Anthropic’s data shows:

  • Debugging and code comprehension are the most frequent Claude use cases;

  • Engineers saved “a little time per task,” but total output expanded dramatically.

Two mechanisms drive this:

  1. AI absorbs repeatable, easily verifiable, low-friction tasks, lowering the psychological cost of getting started;

  2. Humans can redirect time toward analysis, decision-making, system design, and trade-off reasoning—where actual value is created.

This is not linear acceleration; it is qualitative reallocation.


Personal Takeaway: If you treat AI as a code generator, you’re using only 10% of its value.

What to delegate:

  • log diagnosis

  • structural rewrites

  • boilerplate implementation

  • test scaffolding

  • documentation framing

Where to invest your attention:

  • defining the problem

  • architectural trade-offs

  • code review

  • cross-team alignment

  • identifying the critical path

What you choose to work on—not how fast you type—is where your value lies.


Capability Expansion: When Cross-Stack Work Stops Being Intimidating

Story: A Security Engineer Builds the First Dashboard of Her Life

Lisa, a member of the security team, excelled at threat modeling and code audits—but had almost no front-end experience.

The team needed a real-time risk dashboard. Normally this meant:

  • queuing for front-end bandwidth,

  • waiting days or weeks,

  • iterating on a minimal prototype.

This time, she fed API response data into Claude and asked:

“Generate a simple HTML + JS interface with filters and basic visualization.”

Within seconds, Claude produced a working dashboard—charts, filters, and interactions included.
Lisa polished the styling and shipped it the same day.

For the first time, she felt she could carry a full problem from end to end.


Insight: AI turns “I can’t do this” into “I can try,” and “try” into “I can deliver.”

One of the clearest conclusions from Anthropic’s report:

Everyone is becoming more full-stack.

Evidence:

  • Security teams navigate unfamiliar codebases with AI;

  • Researchers create interactive data visualizations;

  • Backend engineers perform lightweight data analysis;

  • Non-engineers write small automation scripts.

This doesn’t eliminate roles—it shortens the path from idea to MVP, deepens end-to-end system understanding, and raises the baseline capability of every contributor.


Personal Takeaway: The most valuable skill isn’t a specific tech stack—it's how quickly AI amplifies your ability to cross domains.

Practice:

  • Use AI for one “boundary task” you’re not familiar with (front end, analytics, DevOps scripts).

  • Evaluate the reliability of the output.

  • Transfer the gained understanding back into your primary role.

In the AI era, your identity is no longer “backend/front-end/security/data,”
but:

Can you independently close the loop on a problem?


Learning Evolution: AI Accelerates Doing, but Can Erode Understanding

Story: The New Engineer Who “Learns Faster but Understands Less”

Alex, a new hire, needed to understand a large service mesh.
With Claude’s guidance, he wrote seemingly reasonable code within a week.

Three months later, he realized:

  • he knew how to write code, but not why it worked;

  • Claude understood the system better than he did;

  • he could run services, but couldn’t explain design rationale or inter-service communication patterns.

This was the “supervision paradox” many engineers described:

To use AI well, you must be capable of supervising it—
but relying on AI too heavily weakens the very ability required for supervision.


Insight: AI accelerates procedural learning but dilutes conceptual depth.

Two speeds of learning emerge:

  • Procedural learning (fast): AI provides steps and templates.

  • Conceptual learning (slow): Requires structural comprehension, trade-off reasoning, and system thinking.

AI creates the illusion of mastery before true understanding forms.


Personal Takeaway: Growth comes from dialogue with AI, not delegation to AI.

To counterbalance the paradox:

  1. Write a first draft yourself before asking AI to refine it.

  2. Maintain “no-AI zones” for foundational practice.

  3. Use AI as a teacher:

    • ask for trade-off explanations,

    • compare alternative architectures,

    • request detailed code review logic,

    • force yourself to articulate “why this design works.”

AI speeds you up, but only you can build the mental models.


Professional Identity: Between Excitement and Anxiety

Story: Some Feel Like “AI Team Leads”—Others Feel Like They No Longer Write Code

Reactions varied widely:

  • Some engineers said:

    “It feels like managing a small AI engineering team. My output has doubled.”

  • Others lamented:

    “I enjoy writing code. Now my work feels like stitching together AI outputs. I’m not sure who I am anymore.”

A deeper worry surfaced:

“If AI keeps improving, what remains uniquely mine?”

Anthropic doesn’t offer simple reassurance—but reveals a clear shift:

Professional identity is moving from craft execution to system orchestration.


Insight: The locus of human value is shifting from doing tasks to directing how tasks get done.

AI already handles:

  • coding

  • debugging

  • test generation

  • documentation scaffolding

But it cannot replace:

  1. contextual judgment across team, product, and organization

  2. long-term architectural reasoning

  3. multi-stakeholder coordination

  4. communication, persuasion, and explanation

These human strengths become the new core competencies.


Personal Takeaway: Your value isn’t “how much you code,” but “how well you enable code to be produced.”

Ask yourself:

  1. Do I know how to orchestrate AI effectively in workflows and teams?

  2. Can I articulate why a design choice is better than alternatives?

  3. Am I shifting from executor to designer, reviewer, or coordinator?

If yes, your career is already evolving upward.


An Anthropic-Style Personal Growth Roadmap

Putting the four stories together reveals an “AI-era personal evolution model”:


1. Efficiency Upgrade: Reclaim attention from low-value zones

AI handles: repetitive, verifiable, mechanical tasks
You focus on: reasoning, trade-offs, systemic thinking


2. Capability Expansion: Cross-stack and cross-domain agility becomes the norm

AI lowers technical barriers
You turn lower barriers into higher ownership


3. Learning Evolution: Treat AI as a sparring partner, not a shortcut

AI accelerates doing
You consolidate understanding
Contrast strengthens judgment


4. Professional Identity Shift: Move toward orchestration and supervision

AI executes
You design, interpret, align, and guide


One-Sentence Summary

Anthropic shows how individuals become stronger—not by coding faster, but by redefining their relationship with AI and elevating themselves into orchestrators of human-machine collaboration.

 

Related Topic

Generative AI: Leading the Disruptive Force of the Future
HaxiTAG EiKM: The Revolutionary Platform for Enterprise Intelligent Knowledge Management and Search
From Technology to Value: The Innovative Journey of HaxiTAG Studio AI
HaxiTAG: Enhancing Enterprise Productivity with Intelligent Knowledge Management Solutions
HaxiTAG Studio: AI-Driven Future Prediction Tool
A Case Study:Innovation and Optimization of AI in Training Workflows
HaxiTAG Studio: The Intelligent Solution Revolutionizing Enterprise Automation
Exploring How People Use Generative AI and Its Applications
HaxiTAG Studio: Empowering SMEs with Industry-Specific AI Solutions
Maximizing Productivity and Insight with HaxiTAG EIKM System

Friday, October 17, 2025

Walmart’s Deep Insights and Strategic Analysis on Artificial Intelligence Applications

In today’s rapidly evolving retail landscape, data has become the core driver of business growth. As a global retail giant, Walmart deeply understands the value of data and actively embraces artificial intelligence (AI) to maintain its leadership in an increasingly competitive market. This article, from the perspective of a retail technology expert, provides an in-depth analysis of how Walmart integrates AI into its operations and customer experience (CX), and offers professional, precise, and authoritative insights into its AI strategy in light of broader industry trends.

Walmart AI Application Case Studies

1. Intelligent Customer Support: Redefining Service Interactions

Walmart’s customer service chatbot goes beyond traditional Q&A functions, marking a leap toward “agent-based AI.” The system not only responds to routine inquiries but can also directly execute critical actions such as canceling orders and initiating refunds. This innovation streamlines the customer service process, replacing lengthy, multi-step human intervention with instant, seamless self-service. Customers can handle order changes without cumbersome navigation or long waiting times, significantly boosting satisfaction. This customer-centric design reduces friction, optimizes the overall experience, and still intelligently escalates complex or emotionally nuanced cases to human agents. This aligns with broader industry trends, where AI-driven chatbots reduce customer service costs by approximately 30%, delivering both efficiency gains and cost savings [1].

2. Personalized Shopping Experience: Building the Future of “Retail for One”

Personalization through AI is at the core of Walmart’s strategy to improve satisfaction and loyalty. By analyzing customer interests, search history, and purchasing behavior, Walmart’s AI dynamically generates personalized homepage content and integrates customized text and imagery. As Hetvi Damodhar, Senior Director of E-commerce Personalization at Walmart, explains, the goal is to create “a truly unique store for every shopper—where the most relevant Walmart is already on your phone.” Since adopting AI, Walmart’s customer satisfaction scores have risen by 38%.

Looking ahead, Walmart is piloting solution-based search. Instead of merely typing “balloons” or “candles,” a customer might ask, “Help me plan a birthday party for my niece,” and the system intelligently assembles a comprehensive product list for the event. This “effortless CX” reduces decision-making costs and simplifies the shopping journey, granting Walmart a competitive edge over online rivals like Amazon. The approach reflects industry-wide trends emphasizing hyper-personalized experiences and AI-powered visual and voice search [2, 3].

3. Intelligent Inventory Optimization: Enhancing Supply-Demand Precision and Operational Resilience

Inventory management has always been a complex retail challenge. Walmart has revolutionized this process with its AI assistant, Wally. Wally processes massive, complex datasets and answers merchant questions about inventory, shipping, and supply in natural language—eliminating the need to interpret complex tables and charts. Its functions include data entry and analysis, root cause identification for product performance anomalies, ticket creation for issue resolution, and predictive modeling to forecast customer interest.

With Wally, Walmart achieves “the right product at the right place at the right time,” effectively preventing stockouts or overstocking. This improves supply chain efficiency and responsiveness while freeing merchants from tedious analysis, enabling focus on higher-value strategic decisions. Wally demonstrates the transformative potential of AI in inventory optimization and streamlined operations [4, 5].

4. Robotics in Operations: Automation Driving Efficiency

Walmart’s adoption of robotics strengthens both speed and accuracy in physical operations. In warehouses, robots move and sort goods, accelerating processing and reducing errors. In stores, robots scan shelves and identify misplaced or missing items, improving shelf accuracy and minimizing human error. This allows employees to focus on customer service and value-added management tasks. Enhanced automation reduces labor costs, accelerates response times, and is becoming a key driver of productivity and customer experience improvements in retail [6].

Conclusion and Expert Commentary

Walmart’s comprehensive deployment of AI demonstrates strategic foresight and deep insight as a retail industry leader. Its AI applications extend across the entire retail value chain—from front-end customer interaction to back-end supply chain management. This end-to-end AI enablement has yielded significant benefits in three dimensions:

  1. Enhanced Customer Experience: Personalized recommendations, intelligent search, and agent-style chatbots create a seamless, highly customized shopping journey, elevating satisfaction and loyalty.

  2. Breakthroughs in Operational Efficiency: Wally’s inventory optimization and robotics in warehouses and stores deliver significant efficiency gains, cost reductions, and stronger supply chain resilience.

  3. Employee Empowerment: AI tools liberate staff from repetitive, low-value tasks, allowing them to focus on creative and strategic contributions that improve overall organizational performance.

Walmart’s case clearly illustrates that AI is no longer a “nice-to-have” in retail, but rather the cornerstone of competitive advantage and sustainable growth. Through data-driven decision-making, intelligent process reengineering, and customer-centric innovation, Walmart is building a smarter, more efficient, and agile retail ecosystem. Its success offers valuable lessons for peers: in the era of digital transformation, only by deeply integrating AI can retailers remain competitive, continuously create customer value, and lead the future trajectory of the industry.

Related topic:

How to Get the Most Out of LLM-Driven Copilots in Your Workplace: An In-Depth Guide
Empowering Sustainable Business Strategies: Harnessing the Potential of LLM and GenAI in HaxiTAG ESG Solutions
The Application and Prospects of HaxiTAG AI Solutions in Digital Asset Compliance Management
HaxiTAG: Enhancing Enterprise Productivity with Intelligent Knowledge Management Solutions
Empowering Enterprise Sustainability with HaxiTAG ESG Solution and LLM & GenAI Technology
The Application of HaxiTAG AI in Intelligent Data Analysis
How HaxiTAG AI Enhances Enterprise Intelligent Knowledge Management
Effective PR and Content Marketing Strategies for Startups: Boosting Brand Visibility
Leveraging HaxiTAG AI for ESG Reporting and Sustainable Development

Thursday, May 1, 2025

How to Identify and Scale AI Use Cases: A Three-Step Strategy and Best Practices Guide

The "Identifying and Scaling AI Use Cases" report by OpenAI outlines a three-step strategy for identifying and scaling AI applications, providing best practices and operational guidelines to help businesses efficiently apply AI in diverse scenarios.

I. Identifying AI Use Cases

  1. Identifying Key Areas: The first step is to identify AI opportunities in the day-to-day operations of the company, particularly focusing on tasks that are efficient, low-value, and highly repetitive. AI can help automate processes, optimize data analysis, and accelerate decision-making, thereby freeing up employees' time to focus on more strategic tasks.

  2. Concept of AI as a Super Assistant: AI can act as a super assistant, supporting all work tasks, particularly in areas such as low-value repetitive tasks, skill bottlenecks, and navigating uncertainty. For example, AI can automatically generate reports, analyze data trends, assist with code writing, and more.

II. Scaling AI Use Cases

  1. Six Core Use Cases: Businesses can apply the following six core use cases based on the needs of different departments:

    • Content Creation: Automating the generation of copy, reports, product manuals, etc.

    • Research: Using AI for market research, competitor analysis, and other research tasks.

    • Coding: Assisting developers with code generation, debugging, and more.

    • Data Analysis: Automating the processing and analysis of multi-source data.

    • Ideation and Strategy: Providing creative support and generating strategic plans.

    • Automation: Simplifying and optimizing repetitive tasks within business processes.

  2. Internal Promotion: Encourage employees across departments to identify AI use cases through regular activities such as hackathons, workshops, and peer learning sessions. By starting with small-scale pilot projects, organizations can accumulate experience and gradually scale up AI applications.

III. Prioritizing Use Cases

  1. Impact/Effort Matrix: By evaluating each AI use case in terms of its impact and effort, prioritize those with high impact and low effort. These are often the best starting points for quickly delivering results and driving larger-scale AI application adoption.

  2. Resource Allocation and Leadership Support: High-value, high-effort use cases require more time, resources, and support from top management. Starting with small projects and gradually expanding their scale will allow businesses to enhance their overall AI implementation more effectively.

IV. Implementation Steps

  1. Understanding AI’s Value: The first step is to identify which business areas can benefit most from AI, such as automating repetitive tasks or enhancing data analysis capabilities.

  2. Employee Training and Framework Development: Provide training to employees to help them understand and master the six core use cases. Practical examples can be used to help employees better identify AI's potential.

  3. Prioritizing Projects: Use the impact/effort matrix to prioritize all AI use cases. Start with high-benefit, low-cost projects and gradually expand to other areas.

Summary

When implementing AI use case identification and scaling, businesses should focus on foundational tasks, identifying high-impact use cases, and promoting full employee participation through training, workshops, and other activities. Start with low-effort, high-benefit use cases for pilot projects, and gradually build on experience and data to expand AI applications across the organization. Leadership support and effective resource allocation are also crucial for the successful adoption of AI.

Related topic:

Monday, December 23, 2024

Insights, Analysis, and Commentary: The Value of Notion AI's Smart Integration and Industry Implications

 The Rise of AI Productivity Tools

As digital transformation progresses, the demand for intelligent tools from both enterprises and individual users has grown significantly. From task management to information organization, the market expects tools to liberate users from repetitive tasks, allowing them to focus their time and energy on high-value work. Notion AI was developed in this context, integrated into the Notion productivity platform. By automating tasks such as writing, note summarization, and brainstorming, it showcases AI's potential to enhance efficiency and drive innovation.

Seamless Integration of AI Capabilities into Productivity Tools
Notion AI is not merely a standalone AI writing or data processing tool. Its core strength lies in its tight integration with the Notion platform, forming a seamless "AI + Knowledge Management" loop. Upon closer analysis, Notion AI's unique value can be summarized in the following aspects:

  1. Flexibility in Multi-Scenario Applications
    Notion AI provides features such as writing optimization, content refinement, structured summarization, and creative ideation. This versatility allows it to excel in both personal and collaborative team settings. For example, in product development, teams can use Notion AI to quickly summarize meeting takeaways and convert information into actionable task lists. In marketing, it can generate compelling promotional copy, accelerating creative iteration cycles.

  2. Deeply Embedded Workflow Optimization
    Compared to traditional AI tools, Notion AI's advantage lies in its seamless integration into the Notion platform. Users can complete end-to-end processes—from data collection to processing—without switching to external applications. This deeply embedded design not only improves user convenience but also minimizes time lost due to application switching, aligning with the core objective of corporate digital tools: cost reduction and efficiency improvement.

  3. Scalability and Personalization
    Leveraging Notion's open platform, users can further customize Notion AI's features to meet specific needs. For instance, users of Hashitag's EiKM product line can utilize APIs to integrate Notion AI with their enterprise knowledge management systems, delivering personalized solutions tailored to business contexts. This scalability transforms Notion AI from a static tool into a continuously evolving productivity partner.

Future Directions for AI Productivity Tools
The success of Notion AI offers several key takeaways for the industry:

  1. The Need for Deeper Integration of AI Models and Real-World Scenarios
    The true value of intelligent tools lies in their ability to address specific scenarios. Future AI products must better understand the unique needs of different industries, providing targeted solutions. For example, developing specialized knowledge modules and language models for verticals like law or healthcare.

  2. Systematic Integration Centered on User Experience
    Products like Notion AI, which emphasize seamless integration, should serve as industry benchmarks. Tool developers must design from the perspective of real user workflows, ensuring that new technologies do not disrupt existing systems but instead enhance experiences through smooth integration.

  3. The Evolution of Productivity Tools from Single Functionality to Ecosystem Services
    As market competition intensifies, tools with singular functionalities will struggle to meet user expectations. Notion AI’s end-to-end service demonstrates that future productivity tools must adopt an ecosystem approach, enabling interconnectivity among different functional modules.

Conclusion: The Vision and Implementation of Notion AI
Notion AI is not only a benchmark for intelligent productivity tools but also a successful example of how AI can empower knowledge workers in the future. By continuously refining its algorithms, enhancing multi-scenario adaptability, and promoting ecosystem openness, it has the potential to become an indispensable engine of productivity in a knowledge-based society. For enterprises, drawing inspiration from Notion AI’s success could help unlock the full potential of AI and reap significant benefits from digital transformation.

Related Topic

Innovative Application and Performance Analysis of RAG Technology in Addressing Large Model Challenges
HaxiTAG: Enhancing Enterprise Productivity with Intelligent Knowledge Management Solutions
Leveraging Large Language Models (LLMs) and Generative AI (GenAI) Technologies in Industrial Applications: Overcoming Three Key Challenges
HaxiTAG's Studio: Comprehensive Solutions for Enterprise LLM and GenAI Applications
HaxiTAG Studio: Pioneering Security and Privacy in Enterprise-Grade LLM GenAI Applications
HaxiTAG Studio: The Intelligent Solution Revolutionizing Enterprise Automation
HaxiTAG Studio: Leading the Future of Intelligent Prediction Tools
HaxiTAG Studio: Advancing Industry with Leading LLMs and GenAI Solutions
HaxiTAG Studio Empowers Your AI Application Development
HaxiTAG Studio: End-to-End Industry Solutions for Private datasets, Specific scenarios and issues

Wednesday, October 16, 2024

OpenAI Unveils ChatGPT Canvas: Redefining the Future of AI Collaboration

Recently, OpenAI introduced the groundbreaking ChatGPT Canvas, marking the most significant design update since its experimental release in 2022. More than just a visual redesign, ChatGPT Canvas is a text and code editor built around artificial intelligence, offering users an entirely new experience of working alongside AI.

The Revolutionary Significance of ChatGPT Canvas

The launch of ChatGPT Canvas represents a profound transformation in how users interact with artificial intelligence. While the traditional chat interface is user-friendly, it often falls short when handling complex editing or revisions. Canvas addresses this by allowing users to collaborate with ChatGPT in a separate window where AI can make real-time adjustments according to the user’s needs, offering precise suggestions based on context. This innovative design not only boosts productivity but also grants users enhanced flexibility.


For instance, a simple prompt can direct the AI to handle specific sections of a lengthy document, and users can directly edit text or code within the Canvas editor. Compared to similar platforms like Google Docs and Claude Artifacts, ChatGPT Canvas allows AI to provide tailored feedback during the editing process, delivering “point-by-point” feedback, thereby elevating human-AI collaboration to a new level.

A New Way to Collaborate with AI

OpenAI's team is committed to shaping ChatGPT into a true “collaborative partner” rather than just an advisor. Canvas not only automatically detects when it should open to tackle complex tasks, but also offers customized modifications and suggestions based on the user’s specific requirements. For example, when writing a blog on the history of coffee, Canvas can help adjust text length and reading level, significantly improving the fluidity and usability of document processing.

This not only changes the landscape of AI applications but also redefines how humans collaborate with AI—AI is no longer merely a task executor but a partner that actively participates in refining creative ideas.

Looking Ahead: A Closer Partnership Between AI and Humans

Although ChatGPT Canvas is still in its beta phase, there are already plans for future upgrades. As more features are added, such as image generation and multi-task processing, the potential of Canvas will continue to unfold. As the latest form of human-machine collaboration, ChatGPT Canvas heralds the future of AI applications, enhancing work efficiency and providing creative professionals with unprecedented tools.

This collaborative model, where humans and AI co-create, will have far-reaching implications across education, enterprise, research, and many other fields. In the near future, AI may become an indispensable assistant for every project, helping us achieve more imaginative and ambitious goals together.

Related Topic

GPT-4o: The Dawn of a New Era in Human-Computer Interaction

How to Choose Between Subscribing to ChatGPT, Claude, or Building Your Own LLM Workspace: A Comprehensive Evaluation and Decision Guide - GenAI USECASE

A Deep Dive into ChatGPT: Analysis of Application Scope and Limitations

Harnessing GPT-4o for Interactive Charts: A Revolutionary Tool for Data Visualization - GenAI USECASE

The Four Levels of AI Agents: Exploring AI Technology Innovations from ChatGPT to DIY - GenAI USECASE

Enterprise Innovation and Productivity Boost with ChatGPT: AI Technology Leading the Way

Efficiently Creating Structured Content with ChatGPT Voice Prompts - GenAI USECASE

Artificial Intelligence Chatbots: A New Chapter in Human Interaction with,such as ChatGPT - GenAI USECASE

In-depth Analysis of Google I/O 2024: Multimodal AI and Responsible Technological Innovation Usage

How to Effectively Utilize Generative AI and Large-Scale Language Models from Scratch: A Practical Guide and Strategies - GenAI USECASE