Contact

Contact HaxiTAG for enterprise services, consulting, and product trials.

Monday, February 16, 2026

From “Feasible” to “Controllable”: Large-Model–Driven Code Migration Is Crossing the Engineering Rubicon

 In enterprise software engineering, large-scale code migration has long been regarded as a system-level undertaking characterized by high risk, high cost, and low certainty. Even today—when cloud-native architectures, microservices, and DevOps practices are highly mature—cross-language and cross-runtime refactoring still depends heavily on sustained involvement and judgment from seasoned engineers.

In his article “Porting 100k Lines from TypeScript to Rust using Claude Code in a Month”, (Vjeux) documents a practice that, for the first time, uses quantifiable and reproducible data to reveal the true capability boundaries of large language models (LLMs) in this traditionally “heavy engineering” domain.

The case details a full end-to-end effort in which approximately 100,000 lines of TypeScript were migrated to Rust within a single month using Claude Code. The core objective was to test the feasibility and limits of LLMs in large-scale code migration. The results show that LLMs can, under highly automated conditions, complete core code generation, error correction, and test alignment—provided that the task is rigorously decomposed, the process is governed by engineering constraints, and humans define clear semantic-equivalence objectives.

Through file-level and function-level decomposition, automated differential testing, and repeated cleanup cycles, the final Rust implementation achieved a high degree of behavioral consistency with the original system across millions of simulated battles, while also delivering significant performance gains. At the same time, the case exposes limitations in semantic understanding, structural refactoring, and performance optimization—underscoring that LLMs are better positioned as scalable engineering executors, rather than independent system designers.

This is not a flashy story about “AI writing code automatically,” but a grounded experimental report on engineering methods, system constraints, and human–machine collaboration.

The Core Proposition: The Question Is Not “Can We Migrate?”, but “Can We Control It?”

From a results perspective, completing a 100k-line TypeScript-to-Rust migration in one month—with only about 0.003% behavioral divergence across 2.4 million simulation runs—is already sufficient to demonstrate a key fact:

Large language models now possess a baseline capability to participate in complex engineering migrations.

An implicit proposition repeatedly emphasized by the author is this:

Migration success does not stem from the model becoming “smarter,” but from the engineering workflow being redesigned.

Without structured constraints, an initial “migrate file by file” strategy failed rapidly—the model generated large volumes of code that appeared correct yet suffered from semantic drift. This phenomenon is highly representative of real enterprise scenarios: treating a large model as merely a “faster outsourced engineer” often results in uncontrollable technical debt.

The Turning Point: Engineering Decomposition, Not Prompt Sophistication

The true breakthrough in this practice did not come from more elaborate prompts, but from three engineering-level decisions:

  1. Task Granularity Refactoring
    Shifting from “file-level migration” to “function-level migration,” significantly reducing context loss and structural hallucination risks.

  2. Explicit Semantic Anchors
    Preserving original TypeScript logic as comments in the Rust code, ensuring continuous semantic alignment during subsequent cleanup phases.

  3. A Two-Stage Pipeline
    Decoupling generation from cleanup, enabling the model to produce code at high speed while allowing controlled convergence under strict constraints.

At their core, these are not “AI tricks,” but a transposition of software engineering methodology:
separating the most uncertain creative phase from the phase that demands maximal determinism and convergence.

Practical Insights for Enterprise-Grade AI Engineering

From an enterprise services perspective, this case yields at least three clear insights:

First, large models are not “automated engineers,” but orchestratable engineering capabilities.
The value of Claude Code lies not in “writing Rust,” but in its ability to operate within a long-running, rollback-capable, and verifiable engineering system.

Second, testing and verification are the core assets of AI engineering.
The 2.4 million-run behavioral alignment test effectively constitutes a behavior-level semantic verification layer. Without it, the reported 0.003% discrepancy would not even be observable—let alone manageable.

Third, human engineering expertise has not been replaced; it has been elevated to system design.
The author wrote almost no Rust code directly. Instead, he focused on one critical task: designing workflows that prevent the model from making catastrophic mistakes.

This aligns closely with real-world enterprise AI adoption: the true scarcity is not model invocation capability, but cross-task, cross-phase process modeling and governance.

Limitations and Risks: Why This Is Not a “One-Click Migration” Success Story

The report also candidly exposes several critical risks at the current stage:

  • The absence of a formal proof of semantic equivalence, with testing limited to known state spaces;
  • Fragmented performance evaluation, lacking rigorous benchmarking methodologies;
  • A tendency for models to “avoid hard problems,” particularly in cross-file structural refactoring.

These constraints imply that current LLM-based migration capabilities are better suited to verifiable systems, rather than strongly non-verifiable systems—such as financial core ledgers or life-critical control software.

From Experiment to Industrialization: What Is Truly Reproducible Is Not the Code, but the Method

When abstracted into an enterprise methodology, the reusable value of this case does not lie in “TypeScript → Rust,” but in:

  • Converting complex engineering problems into decomposable, replayable, and verifiable AI workflows;
  • Replacing blind trust in model correctness with system-level constraints;
  • Judging migration success through data alignment, not intuition.

This marks the inflection point at which enterprise AI applications move from demonstration to production.

Vjeux’s practice ultimately proves one central point:

When large models are embedded within a serious engineering system, their capability boundaries fundamentally change.

For enterprises exploring the industrialization of AI engineering, this is not a story about tools—but a real-world lesson in system design and human–machine collaboration.

Related topic:

Wednesday, February 11, 2026

When Software Engineering Enters the Era of Long-Cycle Intelligence

A Structural Leap in Multi-Agent Collaboration

An Intelligent Transformation Case Study Based on Cursor’s Long-Running Autonomous Coding Practice

The Hidden Crisis of Large-Scale Software Engineering

Across the global software industry, development tools are undergoing a profound reconfiguration. Represented by Cursor, a new generation of AI-native development platforms no longer serves small or medium-sized codebases, but instead targets complex engineering systems with millions of lines of code, cross-team collaboration, and life cycles spanning many years.

Yet the limitations of traditional AI coding assistants are becoming increasingly apparent. While effective at short, well-scoped tasks, they quickly fail when confronted with long-term goal management, cross-module reasoning, and sustained collaborative execution.

This tension was rapidly amplified inside Cursor. As product complexity increased, the engineering team reached a critical realization: the core issue was not how “smart” the model was, but whether intelligence itself possessed an engineering structure. The capabilities of a single Agent began to emerge as a systemic bottleneck to scalable innovation.

Problem Recognition: From Efficiency Gaps to Structural Imbalance

Through internal experiments, the Cursor team identified three recurring failure modes of single-Agent systems in complex projects:

First, goal drift — as context windows expand, the model gradually deviates from the original objective;
Second, risk aversion — a preference for low-risk, incremental changes while avoiding architectural tasks;
Third, the illusion of collaboration — parallel Agents operating without role differentiation, resulting in extensive duplicated work.

These observations closely align with conclusions published in engineering blogs by OpenAI and Anthropic regarding the instability of Agents in long-horizon tasks, as well as with findings from the Google Gemini team that unstructured autonomous systems do not scale.
The true cognitive inflection point came when Cursor stopped treating AI as a “more capable assistant” and instead reframed it as a digital workforce that must be organized, governed, and explicitly structured.

The Turning Point: From Capability Enhancement to Organizational Design

The strategic inflection occurred with Cursor’s systematic re-architecture of its multi-Agent system.
After the failure of an initial “flat Agents + locking mechanism” approach, the team introduced a layered collaboration model:

  • Planner: Responsible for long-term goal decomposition, global codebase understanding, and task generation;

  • Worker: Executes individual subtasks in parallel, focusing strictly on local optimization;

  • Judge: Evaluates whether phase objectives have been achieved at the end of each iteration.

The essence of this design lies not in technical sophistication, but in translating the division of labor inherent in human engineering organizations into a computable structure. AI Agents no longer operate independently, but instead collaborate within clearly defined responsibility boundaries.

Organizational Intelligence Reconfiguration: From Code Collaboration to Cognitive Collaboration

The impact of the layered Agent architecture extended far beyond coding efficiency alone. In Cursor’s practice, the multi-Agent system enabled three system-level capability shifts:

  1. The formation of shared knowledge mechanisms: continuous scanning by Planners made implicit architectural knowledge explicit;

  2. The solidification of intelligent workflows: task decomposition, execution, and evaluation converged into a stable operational rhythm;

  3. The emergence of model consensus mechanisms: the presence of Judges reduced the risk of treating a single model’s output as unquestioned truth.

This evolution closely echoes HaxiTAG’s long-standing principle in enterprise AI systems: model consensus, not model autocracy—underscoring that intelligent transformation is fundamentally an organizational design challenge, not a single-point technology problem.

Performance and Quantified Outcomes: When AI Begins to Bear Long-Term Responsibility

Cursor’s real-world projects provide quantitative validation of this architecture:

  • Large-scale browser project: 1M+ lines of code, 1,000+ files, running continuously for nearly a week;

  • Framework migration (Solid → React): +266K / –193K lines of change, validated through CI pipelines;

  • Video rendering module optimization: ~25× performance improvement;

  • Long-running autonomous projects: thousands to tens of thousands of commits, million-scale LoC.

More fundamentally, AI began to demonstrate a new capability: the ability to remain accountable to long-term objectives. This marks the emergence of what can be described as a cognitive dividend.

Governance and Reflection: The Boundaries of Structured Intelligence

Cursor did not shy away from the system’s limitations. The team explicitly acknowledged the need for governance mechanisms to support multi-Agent systems:

  • Preventing Planner perspective collapse;

  • Controlling Agent runtime and resource consumption;

  • Periodic “hard resets” to mitigate long-term drift.

These lessons reinforce a critical insight: intelligent transformation is not a one-off deployment, but a continuous cycle of technological evolution, organizational learning, and governance maturation.

An Overview of Cursor’s Multi-Agent AI Effectiveness

Application ScenarioAI Capabilities UsedPractical ImpactQuantified OutcomeStrategic Significance
Large codebase developmentMulti-Agent collaboration + planningSustains long-term engineeringMillion-scale LoCExtends engineering boundaries
Architectural migrationPlanning + parallel executionReduces migration riskSignificantly improved CI pass ratesEnhances technical resilience
Performance optimizationLong-running autonomous optimizationDeep performance gains25× performance improvementUnlocks latent value

Conclusion: When Intelligence Becomes Organized

Cursor’s experience demonstrates that the true value of AI does not stem from parameter scale alone, but from whether intelligence can be embedded within sustainable organizational structures.

In the AI era, leading companies are no longer merely those that use AI, but those that can convert AI capabilities into knowledge assets, process assets, and organizational capabilities.
This is the defining threshold at which intelligent transformation evolves from a tool upgrade into a strategic leap.

Related topic:

Tuesday, February 3, 2026

Cisco × OpenAI: When Engineering Systems Meet Intelligent Agents

— A Landmark Case in Enterprise AI Engineering Transformation

In the global enterprise software and networking equipment industry, Cisco has long been regarded as a synonym for engineering discipline, large-scale delivery, and operational reliability. Its portfolio spans networking, communications, security, and cloud infrastructure; its engineering system operates worldwide, with codebases measured in tens of millions of lines. Any major technical decision inevitably triggers cascading effects across the organization.

Yet it was precisely this highly mature engineering system that, around 2024–2025, began to reveal new forms of structural tension.


When Scale Advantages Turn into Complexity Burdens

As network virtualization, cloud-native architectures, security automation, and AI capabilities continued to stack, Cisco’s engineering environment came to exhibit three defining characteristics:

  • Multi-repository, strongly coupled, long-chain software architectures;
  • A heterogeneous technology stack spanning C/C++ and multiple generations of UI frameworks;
  • Stringent security, compliance, and audit requirements deeply embedded into the development lifecycle.

Against this backdrop, engineering efficiency challenges became increasingly visible.
Build times lengthened, defect remediation cycles grew unpredictable, and cross-repository dependency analysis relied heavily on the tacit knowledge of senior engineers. Scale was no longer a pure advantage; it gradually became a constraint on response speed and organizational agility.

What management faced was not the question of whether to “adopt AI,” but a far more difficult decision:

When engineering complexity exceeds the cognitive limits of individuals and processes, can an organization still sustain its existing productivity curve?


Problem Recognition and Internal Reflection: Tool Upgrades Are Not Enough

At this stage, Cisco did not rush to introduce new “efficiency tools.” Through internal engineering assessments and external consulting perspectives—closely aligned with views from Gartner, BCG, and others on engineering intelligence—a shared understanding began to crystallize:

  • The core issue was not code generation, but the absence of engineering reasoning capability;
  • Information was not missing, but fragmented across logs, repositories, CI/CD pipelines, and engineer experience;
  • Decision bottlenecks were concentrated in the understand–judge–execute chain, rather than at any single operational step.

Traditional IDE plugins or code-completion tools could, at best, reduce localized friction. They could not address the cognitive load inherent in large-scale engineering systems.
The engineering organization itself had begun to require a new form of “collaborative actor.”


The Inflection Point: From AI Tools to AI Engineering Agents

The true turning point emerged with the launch of deep collaboration between Cisco and OpenAI.

Cisco did not position OpenAI’s Codex as a mere “developer assistance tool.” Instead, it was treated as an AI agent capable of being embedded directly into the engineering lifecycle. This positioning fundamentally shaped the subsequent path:

  • Codex was deployed directly into real, production-grade engineering environments;
  • It executed closed-loop workflows—compile → test → fix—at the CLI level;
  • It operated within existing security, review, and compliance frameworks, rather than bypassing governance.

AI was no longer just an adviser. It began to assume an engineering role that was executable, verifiable, and auditable.


Organizational Intelligent Reconfiguration: A Shift in Engineering Collaboration

As Codex took root across multiple core engineering scenarios, its impact extended well beyond efficiency metrics and began to reshape organizational collaboration:

  • Departmental coordination → shared engineering knowledge mechanisms
    Through cross-repository analysis spanning more than 15 repositories, Codex made previously dispersed tacit knowledge explicit.

  • Data reuse → intelligent workflow formation
    Build logs, test results, and remediation strategies were integrated into continuous reasoning chains, reducing repetitive judgment.

  • Decision-making patterns → model-based consensus mechanisms
    Engineers shifted from relying on individual experience to evaluating explainable model-driven reasoning outcomes.

At its core, this evolution marked a transition from an experience-intensive engineering organization to one that was cognitively augmented.


Performance and Quantified Outcomes: Efficiency as a Surface Result

Within Cisco’s real production environments, results quickly became tangible:

  • Build optimization:
    Cross-repository dependency analysis reduced build times by approximately 20%, saving over 1,500 engineering hours per month across global teams.

  • Defect remediation:
    With Codex-CLI’s automated execution and feedback loops, defect remediation throughput increased by 10–15×, compressing cycles from weeks to hours.

  • Framework migration:
    High-repetition tasks such as UI framework upgrades were systematically automated, allowing engineers to focus on architecture and validation.

More importantly, management observed the emergence of a cognitive dividend:
Engineering teams developed a faster and deeper understanding of complex systems, significantly enhancing organizational resilience under uncertainty.


Governance and Reflection: Intelligent Agents Are Not “Runaway Automation”

Notably, the Cisco–OpenAI practice did not sidestep governance concerns:

  • AI agents operated within established security and review frameworks;
  • All execution paths were traceable and auditable;
  • Model evolution and organizational learning formed a closed feedback loop.

This established a clear logic chain:
Technology evolution → organizational learning → governance maturity.
Intelligent agents did not weaken control; they redefined it at a higher level.


Overview of Enterprise Software Engineering AI Applications

Application ScenarioAI CapabilitiesPractical ImpactQuantified OutcomeStrategic Significance
Build dependency analysisCode reasoning + semantic analysisShorter build times-20%Faster engineering response
Defect remediationAgent execution + automated feedbackCompressed repair cycles10–15× throughputReduced systemic risk
Framework migrationAutomated change executionLess manual repetitionWeeks → daysUnlocks high-value engineering capacity

The True Watershed of Engineering Intelligence

The Cisco × OpenAI case is not fundamentally about whether to adopt generative AI. It addresses a more essential question:

When AI can reason, execute, and self-correct, is an enterprise prepared to treat it as part of its organizational capability?

This practice demonstrates that genuine intelligent transformation is not about tool accumulation. It is about converting AI capabilities into reusable, governable, and assetized organizational cognitive structures.
This holds true for engineering systems—and, increasingly, for enterprise intelligence at large.

For organizations seeking to remain competitive in the AI era, this is a case well worth sustained study.

Related topic:


Thursday, January 29, 2026

The Intelligent Inflection Point: 37 Interactive Entertainment’s AI Decision System in Practice and Its Performance Breakthrough

When the “Cognitive Bottleneck” Becomes the Hidden Ceiling on Industry Growth

Over the past decade of rapid expansion in China’s gaming industry, 37 Interactive Entertainment has grown into a company with annual revenues approaching tens of billions of RMB and a complex global operating footprint. Extensive R&D pipelines, cross-market content production, and multi-language publishing have collectively pushed its requirements for information processing, creative productivity, and global response speed to unprecedented levels.

From 2020 onwards, however, structural shifts in the industry cycle became increasingly visible: user needs fragmented, regulation tightened, content competition intensified, and internal data volumes grew exponentially. Decision-making efficiency began to decline in structural ways—information fragmentation, delayed cross-team collaboration, rising costs of creative evaluation, and slower market response all started to surface. Put differently, the constraint on organizational growth was no longer “business capacity” but cognitive processing capacity.

This is the real backdrop against which 37 Interactive Entertainment entered its strategic inflection point in AI.

Problem Recognition and Internal Reflection: From Production Issues to Structural Cognitive Deficits

The earliest warning signs did not come from external shocks, but from internal research reports. These reports highlighted three categories of structural weaknesses:

  • Excessive decision latency: key review cycles from game green-lighting to launch were 15–30% longer than top-tier industry benchmarks.

  • Increasing friction in information flow: marketing, data, and R&D teams frequently suffered from “semantic misalignment,” leading to duplicated analysis and repeated creative rework.

  • Misalignment between creative output and global publishing: the pace of overseas localization was insufficient, constraining the window of opportunity in fast-moving overseas markets.

At root, these were not problems of effort or diligence. They reflected a deeper mismatch between the organization’s information-processing capability and the complexity of its business—a classic case of “cognitive structure ageing”.

The Turning Point and the Introduction of an AI Strategy: From Technical Pilots to Systemic Intelligent Transformation

The genuine strategic turn came after three developments:

  1. Breakthroughs in natural language and vision models in 2022, which convinced internal teams that text and visual production were on the verge of an industry-scale transformation;

  2. The explosive advancement of GPT-class models in 2023, which signaled a paradigm shift toward “model-first” thinking across the sector;

  3. Intensifying competition in game exports, which made content production and publishing cadence far more time-sensitive.

Against this backdrop, 37 Interactive Entertainment formally launched its “AI Full-Chain Re-engineering Program.” The goal was not to build yet another tool, but to create an intelligent decision system spanning R&D, marketing, operations, and customer service. Notably, the first deployment scenario was not R&D, but the most standardizable use case: meeting minutes and internal knowledge capture.

The industry-specific large model “Xiao Qi” was born in this context.

Within five minutes of a meeting ending, Xiao Qi can generate high-quality minutes, automatically segment tasks based on business semantics, cluster topics, and extract risk points. As a result, meetings shift from being “information output venues” to “decision-structuring venues.” Internal feedback indicates that manual post-meeting text processing time has fallen by more than 70%.

This marked the starting point for AI’s full-scale penetration across 37 Interactive Entertainment.

Organizational Intelligent Reconfiguration: From Digital Systems to Cognitive Infrastructure

Unlike many companies that introduce AI merely as a tool, 37 Interactive Entertainment has pursued a path of systemic reconfiguration.

1. Building a Unified AI Capability Foundation

On top of existing digital systems—such as Quantum for user acquisition and Tianji for operations data—the company constructed an AI capability foundation that serves as a shared semantic and knowledge layer, connecting game development, operations, and marketing.

2. Xiao Qi as the Organization’s “Cognitive Orchestrator”

Xiao Qi currently provides more than 40 AI capabilities, covering:

  • Market analysis

  • Product ideation and green-lighting

  • Art production

  • Development assistance

  • Operations analytics

  • Advertising and user acquisition

  • Automated customer support

  • General office productivity

Each capability is more than a simple model call; it is built as a scenario-specific “cognitive chain” workflow. Users do not need to know which model is being invoked. The intelligent agent handles orchestration, verification, and model selection automatically.

3. Re-industrializing the Creative Production Chain

Within art teams, Xiao Qi does more than improve efficiency—it enables a form of creative industrialization:

  • Over 500,000 2D assets produced in a single quarter (an efficiency gain of more than 80%);

  • Over 300 3D assets, accounting for around 30% of the total;

  • Artists shifting from “asset producers” to curators of aesthetics and creativity.

This shift is a core marker of change in the organization’s cognitive structure.

4. Significantly Enhanced Risk Sensing and Global Coordination

AI-based translation has raised coverage of overseas game localization to more than 85%, with accuracy rates around 95%.
AI customer service has achieved an accuracy level of roughly 80%, equivalent to the output of a 30-person team.
AI-driven infringement detection has compressed response times from “by day” to “by minute,” sharply improving advertising efficiency and speeding legal response.

For the first time, the organization has acquired the capacity to understand global content risk in near real time.

Performance Outcomes: Quantifying the Cognitive Dividend

Based on publicly shared internal data and industry benchmarking, the core results of the AI strategy can be summarized as follows:

  • Internal documentation and meeting-related workflows are 60–80% more efficient;

  • R&D creative production efficiency is up by 50–80%;

  • AI customer service effectively replaces a 30-person team, with response speeds more than tripled;

  • AI translation shortens overseas launch cycles by 30–40%;

  • Ad creative infringement detection now operates on a minute-level cycle, cutting legal and marketing costs by roughly 20–30%.

These figures do not merely represent “automation-driven cost savings.” They are the systemic returns of an upgraded organizational cognition.

Governance and Reflection: The Art of Balance in the Age of Intelligent Systems

37 Interactive Entertainment’s internal reflection is notably sober.

1. AI Cannot Replace Value Judgement

Wang Chuanpeng frames the issue this way: “Let the thinkers make the choices, and let the dreamers create.” Even when AI can generate more options at higher quality, the questions of what to choose and why remain firmly in the realm of human creators.

2. Model Transparency and Algorithm Governance Are Non-Negotiable

The company has gradually established:

  • Model bias assessment protocols;

  • Output reliability and confidence-level checks;

  • AI ethics review processes;

  • Layered data governance and access-control frameworks.

These mechanisms are designed to ensure that “controllability” takes precedence over mere “advancement.”

3. The Industrialization Baseline Determines AI’s Upper Bound

If organizational processes, data, and standards are not sufficiently mature, AI’s value will be severely constrained. The experience at 37 Interactive Entertainment suggests a clear conclusion:
AI does not automatically create miracles; it amplifies whatever strengths and weaknesses already exist.

Appendix: Snapshot of AI Application Value

Application Scenario AI Capabilities Used Practical Effect Quantitative Outcome Strategic Significance
Meeting minutes system NLP + semantic search Automatically distills action items, reduces noise in discussions Review cycles shortened by 35% Lowers organizational decision-making friction
Infringement detection Risk prediction + graph neural nets Rapidly flags non-compliant creatives and alerts legal teams Early warnings up to 2 weeks in advance Strengthens end-to-end risk sensing
Overseas localization Multilingual LLMs + semantic alignment Cuts translation costs and speeds time-to-market 95% accuracy; cycles shortened by 40% Enhances global competitiveness
Art production Text-to-image + generative modeling Mass generation of high-quality creative assets Efficiency gains of around 80% Underpins creative industrialization
Intelligent customer care Multi-turn dialogue + intent recognition Automatically resolves player inquiries Output equivalent to a 30-person team Reduces operating costs while improving experience consistency

The True Nature of the Intelligent Leap

The 37 Interactive Entertainment case highlights a frequently overlooked truth:
The revolution brought by AI is not a revolution in tools, but a revolution in cognitive structure.

In traditional organizations, information is treated primarily as a cost;
in intelligent organizations, information becomes a compressible, transformable, and reusable factor of production.

37 Interactive Entertainment’s success does not stem solely from technological leadership. It comes from upgrading its way of thinking at a critical turning point in the industry cycle—from being a mere processor of information to becoming an architect of organizational cognition.

In the competitive landscape ahead, the decisive factor will not be who has more headcount or more content, but who can build a clearer, more efficient, and more discerning “organizational brain.” AI is only the entry point. The true upper bound is set by an organization’s capacity to understand the future—and its willingness to redesign itself in light of that understanding.

Related Topic

Corporate AI Adoption Strategy and Pitfall Avoidance Guide
Enterprise Generative AI Investment Strategy and Evaluation Framework from HaxiTAG’s Perspective
From “Can Generate” to “Can Learn”: Insights, Analysis, and Implementation Pathways for Enterprise GenAI
BCG’s “AI-First” Performance Reconfiguration: A Replicable Path from Adoption to Value Realization
Activating Unstructured Data to Drive AI Intelligence Loops: A Comprehensive Guide to HaxiTAG Studio’s Middle Platform Practices
The Boundaries of AI in Everyday Work: Reshaping Occupational Structures through 200,000 Bing Copilot Conversations
AI Adoption at the Norwegian Sovereign Wealth Fund (NBIM): From Cost Reduction to Capability-Driven Organizational Transformation

Walmart’s Deep Insights and Strategic Analysis on Artificial Intelligence Applications