Get GenAI guide

Access HaxiTAG GenAI research content, trends and predictions.

Showing posts with label GenAI application. Show all posts
Showing posts with label GenAI application. Show all posts

Friday, July 18, 2025

OpenAI’s Seven Key Lessons and Case Studies in Enterprise AI Adoption

AI is Transforming How Enterprises Work

OpenAI recently released a comprehensive guide on enterprise AI deployment, openai-ai-in-the-enterprise.pdf, based on firsthand experiences from its research, application, and deployment teams. It identified three core areas where AI is already delivering substantial and measurable improvements for organizations:

  • Enhancing Employee Performance: Empowering employees to deliver higher-quality output in less time

  • Automating Routine Operations: Freeing employees from repetitive tasks so they can focus on higher-value work

  • Enabling Product Innovation: Delivering more relevant and responsive customer experiences

However, AI implementation differs fundamentally from traditional software development or cloud deployment. The most successful organizations treat AI as a new paradigm, adopting an experimental and iterative approach that accelerates value creation and drives faster user and stakeholder adoption.

OpenAI’s integrated approach — combining foundational research, applied model development, and real-world deployment — follows a rapid iteration cycle. This means frequent updates, real-time feedback collection, and continuous improvements to performance and safety.

Seven Key Lessons for Enterprise AI Deployment

Lesson 1: Start with Rigorous Evaluation
Case: How Morgan Stanley Ensures Quality and Safety through Iteration

As a global leader in financial services, Morgan Stanley places relationships at the core of its business. Faced with the challenge of introducing AI into highly personalized and sensitive workflows, the company began with rigorous evaluations (evals) for every proposed use case.

Evaluation is a structured process that assesses model performance against benchmarks within specific applications. It also supports continuous process improvement, reinforced with expert feedback at each step.

In its early stages, Morgan Stanley focused on improving the efficiency and effectiveness of its financial advisors. The hypothesis was simple: if advisors could retrieve information faster and reduce time spent on repetitive tasks, they could provide more and better insights to clients.

Three initial evaluation tracks were launched:

  • Translation Accuracy: Measuring the quality of AI-generated translations

  • Summarization: Evaluating AI’s ability to condense information using metrics for accuracy, relevance, and coherence

  • Human Comparison: Comparing AI outputs to expert responses, scored on accuracy and relevance

Results: Today, 98% of Morgan Stanley advisors use OpenAI tools daily. Document access has increased from 20% to 80%, and search times have dropped dramatically. Advisors now spend more time on client relationships, supported by task automation and faster insights. Feedback has been overwhelmingly positive — tasks that once took days now take hours.

Lesson 2: Embed AI into Products
Case: How Indeed Humanized Job Matching

AI’s strength lies in handling vast datasets from multiple sources, enabling companies to automate repetitive work while making user experiences more relevant and personalized.

Indeed, the world’s largest job site, now uses GPT-4o mini to redefine job matching.

The “Why” Factor: Recommending good-fit jobs is just the beginning — it’s equally important to explain why a particular role is suggested.

By leveraging GPT-4o mini’s analytical and language capabilities, Indeed crafts natural-language explanations in its messages and emails to job seekers. Its popular "invite to apply" feature also explains how a candidate’s background makes them a great fit.

When tested against the prior matching engine, the GPT-powered version showed:

  • A 20% increase in job application starts

  • A 13% improvement in downstream hiring success

Given that Indeed sends over 20 million messages monthly and serves 350 million visits, these improvements translate to major business impact.

Scaling posed a challenge due to token usage. To improve efficiency, OpenAI and Indeed fine-tuned a smaller model that achieved similar results with 60% fewer tokens.

Helping candidates understand why they’re a fit for a role is a deeply human experience. With AI, Indeed is enabling more people to find the right job faster — a win for everyone.

Lesson 3: Start Early, Invest Ahead of Time
Case: Klarna’s Compounding Returns from AI Adoption

AI solutions rarely work out-of-the-box. Use cases grow in complexity and impact through iteration. Early adoption helps organizations realize compounding gains.

Klarna, a global payments and shopping platform, launched a new AI assistant to streamline customer service. Within months, the assistant handled two-thirds of all service chats — doing the work of hundreds of agents and reducing average resolution time from 11 to 2 minutes. It’s expected to drive $40 million in profit improvement, with customer satisfaction scores on par with human agents.

This wasn’t an overnight success. Klarna achieved these results through constant testing and iteration.

Today, 90% of Klarna’s employees use AI in their daily work, enabling faster internal launches and continuous customer experience improvements. By investing early and fostering broad adoption, Klarna is reaping ongoing returns across the organization.

Lesson 4: Customize and Fine-Tune Models
Case: How Lowe’s Improved Product Search

The most successful enterprises using AI are those that invest in customizing and fine-tuning models to fit their data and goals. OpenAI has invested heavily in making model customization easier — through both self-service tools and enterprise-grade support.

OpenAI partnered with Lowe’s, a Fortune 50 home improvement retailer, to improve e-commerce search accuracy and relevance. With thousands of suppliers, Lowe’s deals with inconsistent or incomplete product data.

Effective product search requires both accurate descriptions and an understanding of how shoppers search — which can vary by category. This is where fine-tuning makes a difference.

By fine-tuning OpenAI models, Lowe’s achieved:

  • A 20% improvement in labeling accuracy

  • A 60% increase in error detection

Fine-tuning allows organizations to train models on proprietary data such as product catalogs or internal FAQs, leading to:

  • Higher accuracy and relevance

  • Better understanding of domain-specific terms and user behavior

  • Consistent tone and voice, essential for brand experience or legal formatting

  • Faster output with less manual review

Lesson 5: Empower Domain Experts
Case: BBVA’s Expert-Led AI Adoption

Employees often know their problems best — making them ideal candidates to lead AI-driven solutions. Empowering domain experts can be more impactful than building generic tools.

BBVA, a global banking leader with over 125,000 employees, launched ChatGPT Enterprise across its operations. Employees were encouraged to explore their own use cases, supported by legal, compliance, and IT security teams to ensure responsible use.

“Traditionally, prototyping in companies like ours required engineering resources,” said Elena Alfaro, Global Head of AI Adoption at BBVA. “With custom GPTs, anyone can build tools to solve unique problems — getting started is easy.”

In just five months, BBVA staff created over 2,900 custom GPTs, leading to significant time savings and cross-departmental impact:

  • Credit risk teams: Faster, more accurate creditworthiness assessments

  • Legal teams: Handling 40,000+ annual policy and compliance queries

  • Customer service teams: Automating sentiment analysis of NPS surveys

The initiative is now expanding into marketing, risk, operations, and more — because AI was placed in the hands of people who know how to use it.

Lesson 6: Remove Developer Bottlenecks
Case: Mercado Libre Accelerates AI Development

In many organizations, developer resources are the primary bottleneck. When engineering teams are overwhelmed, innovation slows, and ideas remain stuck in backlogs.

Mercado Libre, Latin America's largest e-commerce and fintech company, partnered with OpenAI to build Verdi, a developer platform powered by GPT-4o and GPT-4o mini.

Verdi integrates language models, Python, and APIs into a scalable, unified platform where developers use natural language as the primary interface. This empowers 17,000 developers to build consistently high-quality AI applications quickly — without deep code dives. Guardrails and routing logic are built-in.

Key results include:

  • 100x increase in cataloged products via automated listings using GPT-4o mini Vision

  • 99% accuracy in fraud detection through daily evaluation of millions of product listings

  • Multilingual product descriptions adapted to regional dialects

  • Automated review summarization to help customers understand feedback at a glance

  • Personalized notifications that drive engagement and boost recommendations

Next up: using Verdi to enhance logistics, reduce delivery delays, and tackle more high-impact problems across the enterprise.

Lesson 7: Set Bold Automation Goals
Case: How OpenAI Automates Its Own Work

At OpenAI, we work alongside AI every day — constantly discovering new ways to automate our own tasks.

One challenge was our support team’s workflow: navigating systems, understanding context, crafting responses, and executing actions — all manually.

We built an internal automation platform that layers on top of existing tools, streamlining repetitive tasks and accelerating insight-to-action workflows.

First use case: Working on top of Gmail to compose responses and trigger actions. The platform pulls in relevant customer data and support knowledge, then embeds results into emails or takes actions like opening support tickets.

By integrating AI into daily workflows, the support team became more efficient, responsive, and customer-centric. The platform now handles hundreds of thousands of tasks per month — freeing teams to focus on higher-impact work.

It all began because we chose to set bold automation goals, not settle for inefficient processes.

Key Takeaways

As these OpenAI case studies show, every organization has untapped potential to use AI for better outcomes. Use cases may vary by industry, but the principles remain universal.

The Common Thread: AI deployment thrives on open, experimental thinking — grounded in rigorous evaluation and strong safety measures. The best-performing companies don’t rush to inject AI everywhere. Instead, they align on high-ROI, low-friction use cases, learn through iteration, and expand based on that learning.

The Result: Faster and more accurate workflows, more personalized customer experiences, and more meaningful work — as people focus on what humans do best.

We’re now seeing companies automate increasingly complex workflows — often with AI agents, tools, and resources working in concert to deliver impact at scale.

Related topic:

Exploring HaxiTAG Studio: The Future of Enterprise Intelligent Transformation
Leveraging HaxiTAG AI for ESG Reporting and Sustainable Development
Revolutionizing Market Research with HaxiTAG AI
How HaxiTAG AI Enhances Enterprise Intelligent Knowledge Management
The Application of HaxiTAG AI in Intelligent Data Analysis
The Application and Prospects of HaxiTAG AI Solutions in Digital Asset Compliance Management
Report on Public Relations Framework and Content Marketing Strategies

Saturday, September 21, 2024

Exploring the Concept of Technological Evolution

Tens of thousands of years ago, Darwin's theory of evolution by natural selection presented a perspective on natural evolution where survival of the fittest governed the development of species. In recent years, this perspective has evolved to include systematic views promoted by social and cultural evolution. Currently, we are at the dawn of a new era – the era of technological evolution. Technology is influencing, improving, reshaping, and evolving our world.

Analysis

Darwin's theory of natural evolution reveals how organisms continuously adapt and evolve through genetic variation and the mechanism of survival of the fittest under the pressure of natural selection. This theory laid the foundation for understanding biological evolution.

With the advancement of human civilization, social evolution and cultural evolution have become significant areas of study. Social evolution emphasizes the development and transformation of human social structures, systems, and behavioral patterns over history. Cultural evolution focuses on the adaptation and changes of cultural elements such as language, customs, beliefs, and technology during transmission and transformation. Together, they shape the complexity and diversity of human society.

Entering the information age, the concept of technological evolution has become a focal point. Technology is not only a product of human civilization but also a driving force for social change. Technological evolution suggests that continuous development and application of technology are the key drivers of modern societal progress. By influencing production methods, lifestyles, and ways of thinking, technology plays a crucial role in improving, reshaping, and evolving social structures and individual lives.

Characteristics of Technological Evolution

  • Speed: Compared to natural and social evolution, technological evolution occurs at a much faster pace. For instance, the development of the internet has fundamentally changed global communication and information dissemination in just a few decades.
  • Scope: Technological evolution affects a wide range of fields, including economics, education, healthcare, and culture. Emerging technologies such as artificial intelligence, gene editing, and the Internet of Things are reshaping the operations of various industries.
  • Unpredictability: Technological evolution is highly uncertain and unpredictable. The emergence and widespread adoption of new technologies often bring unexpected impacts and challenges.

Impact of Technological Evolution on Society

  • Increased Productivity: Technological advancements significantly enhance production efficiency, leading to economic prosperity and development. For example, the application of automation and robotics in manufacturing greatly improves production speed and quality.
  • Lifestyle Changes: The application of technology changes people's lifestyles. Technologies such as smart homes, mobile payments, and virtual reality make modern life more convenient and enriching.
  • Social Structure Changes: Technological evolution leads to profound changes in social structures, posing new challenges and opportunities for traditional industries, and continuously giving rise to new professions and work models.
  • Ethical and Legal Challenges: Technological evolution brings new ethical and legal issues. For example, the widespread application of artificial intelligence raises discussions about privacy, security, and ethical considerations.

How Companies Should Adapt to Technological Evolution

Facing rapid technological advancement and a constantly changing market environment, companies must adapt to the concept of technological evolution by continuously promoting business innovation and value creation. Here are some specific strategies and methods:

  • Foster an Innovation Culture

    • Encourage Innovative Thinking: Create an open and inclusive environment that encourages employees to propose new ideas and solutions. Establish innovation reward mechanisms to stimulate creativity.
    • Promote Cross-Department Collaboration: Facilitate collaboration and communication between different departments to break down information silos. Utilize the expertise and resources of each department to achieve collaborative innovation.
  • Invest in R&D

    • Increase R&D Investment: Continuously increase investment in research and development to ensure that technology and products remain at the forefront of the industry. Establish dedicated R&D departments or laboratories to concentrate resources on cutting-edge technology research and development.
    • Focus on Cutting-Edge Technologies: Pay close attention to the development trends of cutting-edge technologies such as artificial intelligence, blockchain, and the Internet of Things, and actively explore their applications in business.
  • Implement Agile Management

    • Adapt Quickly: Adopt agile management methods to enable companies to respond rapidly to market changes and customer needs. Through iterative development, rapid prototyping, and continuous improvement, constantly optimize products and services.
    • Flatten Decision-Making: Simplify decision-making processes, give frontline employees more decision-making power and autonomy, and enhance organizational responsiveness and execution.
  • Cultivate Talent

    • Technical Training: Regularly provide employees with technical training and skills enhancement courses to help them master the latest technical tools and methods. Enhance employees' professional competence and innovation capabilities through internal and external training and exchanges.
    • Attract High-End Talent: Actively attract high-end talent with a background in cutting-edge technologies and innovative thinking to inject new vitality and motivation into the company.
  • Open Collaboration

    • Establish Partnerships: Build partnerships with universities, research institutions, and other companies to share resources and technological achievements, achieving complementary advantages and collaborative innovation.
    • Participate in Industry Alliances: Actively participate in industry alliances and the formulation of technical standards to grasp the latest developments and trends in the industry, enhancing the company's influence and voice in the industry.
  • Utilize Data-Driven Decision Making

    • Data Analysis: Use big data analysis and data mining to deeply understand market dynamics and customer needs, providing decision support. Establish data-driven decision-making mechanisms to improve the scientific management level of the company.
    • Intelligent Applications: Utilize artificial intelligence and machine learning technologies to optimize business processes, improve operational efficiency and service quality, and achieve intelligent management and operations.

The concept of technological evolution is a crucial perspective for understanding the changes in today's world. Companies need to maintain continuous business innovation and value creation through strategies and methods such as fostering an innovation culture, increasing R&D investment, implementing agile management, cultivating talent, open collaboration, and utilizing data-driven decision-making. This not only helps enhance the company's competitiveness and market position but also lays a solid foundation for the company's long-term sustainable development. While embracing the opportunities brought by technological advancement, companies must also pay attention to potential risks and challenges to ensure the sustainable development of technological evolution and create a better future for humanity.

Related topic:

Revolutionizing Market Research with HaxiTAG AI
AI-Supported Market Research: 15 Methods to Enhance Insights
How Artificial Intelligence is Revolutionizing Market Research
The Revolutionary Impact of AI on Market Research
The Application of AI in Market Research: Enhancing Efficiency and Accuracy
HaxiTAG Assists Businesses in Choosing the Perfect AI Market Research Tools
Enterprise-level AI Model Development and Selection Strategies: A Comprehensive Analysis and Recommendations Based on Stanford University's Research Report

Wednesday, September 18, 2024

Anthropic Artifacts: The Innovative Feature of Claude AI Assistant Leading a New Era of Human-AI Collaboration

As a product marketing expert, I conducted a professional research analysis on the features of Anthropic's Artifacts. Let's analyze this innovative feature from multiple angles and share our perspectives.

Product Market Positioning:
Artifacts is an innovative feature developed by Anthropic for its AI assistant, Claude. It aims to enhance the collaborative experience between users and AI. The feature is positioned in the market as a powerful tool for creativity and productivity, helping professionals across various industries efficiently transform ideas into tangible results.

Key Features:

  1. Dedicated Window: Users can view, edit, and build content co-created with Claude in a separate, dedicated window in real-time.
  2. Instant Generation: It can quickly generate various types of content, such as code, charts, prototypes, and more.
  3. Iterative Capability: Users can easily modify and refine the generated content multiple times.
  4. Diverse Output: It supports content creation in multiple formats, catering to the needs of different fields.
  5. Community Sharing: Both free and professional users can publish and remix Artifacts in a broader community.

Interactive Features:
Artifacts' interactive design is highly intuitive and flexible. Users can invoke the Artifacts feature at any point during the conversation, collaborating with Claude to create content. This real-time interaction mode significantly improves the efficiency of the creative process, enabling ideas to be quickly visualized and materialized.

Target User Groups:

  1. Developers: To create architectural diagrams, write code, etc.
  2. Product Managers: To design and test interactive prototypes.
  3. Marketers: To create data visualizations and marketing campaign dashboards.
  4. Designers: To quickly sketch and validate concepts.
  5. Content Creators: To write and organize various forms of content.

User Experience and Feedback:
Although specific user feedback data is not available, the rapid adoption and usage of the product suggest that the Artifacts feature has been widely welcomed by users. Its main advantages include:

  • Enhancing productivity
  • Facilitating the creative process
  • Simplifying complex tasks
  • Strengthening collaborative experiences

User Base and Growth:
Since its launch in June 2023, millions of Artifacts have been created by users. This indicates that the feature has achieved significant adoption and usage in a short period. Although specific growth data is unavailable, it can be inferred that the user base is rapidly expanding.

Marketing and Promotion:
Anthropic primarily promotes the Artifacts feature through the following methods:

  1. Product Integration: Artifacts is promoted as one of the core features of the Claude AI assistant.
  2. Use Case Demonstrations: Demonstrating the practicality and versatility of Artifacts through specific application scenarios.
  3. Community-Driven: Encouraging users to share and remix Artifacts within the community, fostering viral growth.

Company Background:
Anthropic is a tech company dedicated to developing safe and beneficial AI systems. Their flagship product, Claude, is an advanced AI assistant, with the Artifacts feature being a significant component. The company's mission is to ensure that AI technology benefits humanity while minimizing potential risks.

Conclusion:
The Artifacts feature represents a significant advancement in AI-assisted creation and collaboration. It not only enhances user productivity but also pioneers a new mode of human-machine interaction. As the feature continues to evolve and its user base expands, Artifacts has the potential to become an indispensable tool for professionals across various industries.

Related Topic

AI-Supported Market Research: 15 Methods to Enhance Insights - HaxiTAG
Generative AI: Leading the Disruptive Force of the Future - HaxiTAG
Generative AI-Driven Application Framework: Key to Enhancing Enterprise Efficiency and Productivity - HaxiTAG
A Comprehensive Guide to Understanding the Commercial Climate of a Target Market Through Integrated Research Steps and Practical Insights - HaxiTAG
HaxiTAG Studio: Leading the Future of Intelligent Prediction Tools - HaxiTAG
How to Choose Between Subscribing to ChatGPT, Claude, or Building Your Own LLM Workspace: A Comprehensive Evaluation and Decision Guide - GenAI USECASE
Leveraging AI to Enhance Newsletter Creation: Packy McCormick’s Success Story - GenAI USECASE
Professional Analysis on Creating Product Introduction Landing Pages Using Claude AI - GenAI USECASE
Unleashing the Power of Generative AI in Production with HaxiTAG - HaxiTAG
Insight and Competitive Advantage: Introducing AI Technology - HaxiTAG

Thursday, August 22, 2024

The Secret of CTR and Google Search Ranking: SEO Industry's Response Strategies

The leaked technical documents from Google have unveiled the deeper logic behind search ranking factors, especially the critical role that Click-Through Rate (CTR) plays in evaluating content quality. This revelation presents new challenges and opportunities for the SEO industry. This article will delve into the importance of the CTR metric and analyze how the SEO industry can adjust its strategies to achieve a win-win situation by optimizing outcomes while enhancing the user search experience.

The Importance of CTR: Unveiling the Secrets of Google Search Ranking

CTR, or Click-Through Rate, refers to the ratio of clicks to impressions for a specific link on the search results page. According to the leaked Google documents, CTR has become one of the core metrics for evaluating content quality and relevance. Specifically:

The Direct Relationship Between CTR and Search Ranking:

A high CTR indicates a strong user preference for a particular search result, leading Google's algorithm to rank these pages higher as they are perceived to align more closely with user search intent. An increase in CTR not only reflects user interest in the page content but also signifies that the page content is highly aligned with user needs.

CTR as a Dynamic Adjustment Factor:

Google's algorithm dynamically adjusts page rankings based on real-time changes in CTR. This suggests that even if a page meets other technical optimizations, its ranking may still decline if its CTR underperforms. Therefore, CTR is not only a static metric for evaluating content but also a dynamic variable that influences rankings.

SEO Industry Response Strategies: Adjusting Cognition and Technical Tools

Given the importance of CTR, the SEO industry needs to reassess traditional optimization methods and adopt the following strategies to achieve a win-win outcome with Google’s goal of enhancing the search experience:

In-Depth Analysis of User Behavior Signals:

SEO practitioners should incorporate user behavior data, particularly CTR data, into core analysis frameworks. By monitoring CTR performance across different keywords, SEO professionals can more precisely understand user needs, thus optimizing content and titles to better satisfy search intent.

Optimizing Titles and Meta Descriptions to Boost CTR:

Traditional SEO focuses on content and technical optimization while often overlooking the appeal of SERP (Search Engine Results Page) content. To improve CTR, SEO professionals should prioritize optimizing page titles and meta descriptions so that they not only accurately describe the content but also attract user clicks. A/B testing different combinations of titles and descriptions to identify the most effective in boosting CTR is a practical approach to enhancing SEO results.

Refocusing SEO Tools and Strategies:

As CTR gains more weight in rankings, SEO tools should enhance their support for CTR data. SEO platforms can develop specialized CTR analysis modules to help practitioners monitor and optimize CTR performance in real-time. At the same time, content strategies should shift from focusing on “keyword density” to “user click-through rate,” using user experience optimization to drive SEO effectiveness.

Precise Matching of Content with User Search Intent:

Pages with high CTR are often those whose content is closely aligned with user search intent. SEO should be driven by an in-depth analysis of user search behavior, optimizing content structure and information presentation accordingly. Content needs to be of high quality and must also effectively address the actual issues faced by users, enabling it to stand out in the competitive search results.

A Win-Win Strategy for SEO and User Experience

Enhancing CTR not only helps pages achieve higher positions in search rankings but also directly improves the user search experience. The ultimate goal of SEO should be to achieve a win-win situation where website optimization and user satisfaction go hand in hand. By focusing on CTR and user behavior signals, SEO can create content and experiences that align more closely with user expectations, thereby increasing overall website traffic and conversion rates.

Conclusion

Google’s emphasis on CTR points to a new direction for the SEO industry. SEO practitioners should swiftly adjust their strategies, recognizing the importance of CTR in rankings, and optimize title, description, and content matching to improve CTR performance. In this process, the SEO industry will not only enhance its technical capabilities but also align with Google's goal of improving the search experience, ultimately achieving a win-win situation.

HaxiTAG’s Search Intent Analysis Tool will help you better identify your users, map out user personas, analyze their web usage paths, habits, content browsing, and social media preferences, allowing you to design and implement SEM and SEO strategies more effectively, achieving precise user growth and market development.

How Google Search Engine Rankings Work and Their Impact on SEO - HaxiTAG

The Deep Integration of Artificial Intelligence and SEO: Unveiling the Path to Future Search Engine Optimization Competitive Advantage - HaxiTAG

10 Noteworthy Findings from Google AI Overviews - GenAI USECASE

Unveiling the Secrets of AI Search Engines for SEO Professionals: Enhancing Website Visibility in the Age of "Zero-Click Results" - GenAI USECASE

Navigating the Competitive Landscape: How AI-Driven Digital Strategies Revolutionized SEO for a Financial Software Solutions Leader - HaxiTAG

Maximizing Market Analysis and Marketing growth strategy with HaxiTAG SEO Solutions - HaxiTAG

Unveiling the Secrets of AI Search Engines for SEO Professionals: Enhancing Website Visibility in the Age of "Zero-Click Results" - GenAI USECASE

Balancing Potential and Reality of GPT Search - HaxiTAG

Optimizing Airbnb Listings through Semantic Search and Database Queries: An AI-Driven Approach - GenAI USECASE

Strategic Evolution of SEO and SEM in the AI Era: Revolutionizing Digital Marketing with AI - HaxiTAG